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• Supervised learning problems can be formulated to decipher complex molecular processes driving cellular life. E.g. phenotype prediction from molecular data.
• Explainability methods return the important features (e.g. molecules) on which the predictions are predominantly based.
• These features are often interpreted as an indication of the cause of the predictions.

Problematic: What is the relevance of the features identified using explainability methods?
GitHub

Context

• Exploration of the relevance of features from a model’s perspective.
ÝÑ Are the identified features sufficient/necessary for the predictions?
• Emphasis on quantitative metrics and experiments.
• Experiments on gene expression data and simulated data with known discriminative

features mimicking genes.

Contributions

Objective - Assess the relevance of explanatory factors in a classification task.
• Data sample: x P RF.
• Supervised model: f : RF

ÞÑ RC.
E.g. neural network, multilayer perceptron (MLP), logistic regression (LR).

• Chosen explainability method: integrated gradients [3]. Given a baseline x1 and fc the
output of f associated with the class c of x, the score attributed to the ith feature of x is:
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Note: contrary to classical feature selection methods, this method assigns a different
importance value to each of the features within each example.

• Feature rankings
- Local (for a data sample x): features ranked according to the scores ϕipxq.
- Global (for all data samples): features ranked according to the scores ϕg
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Methodological framework

To what extent do predictions vary when some features are masked?
Given a feature ranking, the values of the features of a sample x can be replaced by the
values of the reference x1 one after the other.
Let us denote x̃p the data sample x containing p masked variables and ep the prediction
error with p masked features ep “ maxpf pxq ´ f px̃pq, 0q. The prediction gap (PG) is the
area under the curve ep as a function of p:
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• PGI Masking the most important features first (decreasing scores).
• PGU Masking the least important features first (increasing scores).
• PGR Masking the features in a random order.

Do known discriminative features stand out among the identified features?
In the case of simulated data, the concordance of a ranking with the features that are
really important for classifying an sample can be measured.
Consider a set Er of truly important features and a set Ei consisting of the |Er| most impor-
tant features identified by integrated gradients, the feature agreement (FA) is:

FA “
|Er X Ei|

|Er|
.
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Figure 1 - Scheme describing the metrics PGI and PGU.

Metrics measuring ranking relevance

• Gene expression datasets from TCGA [1]
- PanCan: 33 classes (cancer type), 9680 samples, 16335 features.
Ñ Baseline: null vector.

- BRCA: 2 classes (healthy vs tumours), 1210 samples, 58274 features.
Ñ Baseline: average of the healthy samples.

• Simulation (see Fig.2): 33 classes, 9900 samples, 15000 features, 370 informative per class.
Ñ Baseline: null vector.

The scores are computed for each sample correctly classified of the test set.
Remark: for BRCA, the scores are computed only on tumour samples.

Experimental setting

v1 v2 v3 v4 v5 v6 v7 v8

g1 g2 g3 g4

c1 c2C classes

G groups
(Metabolic pathways)

V variables
(Genes)

Prior on the proportion of groups within a class c αc P RG
`.

Prior on the proportion of variables within a group g ηg P RV
`.

Proportion of variables within a group g βg „ Dirichletpηgq.
Proportion of groups within a data sample s of class c1 θs „ Dirichletpαc1q.

Figure 2 - LDA model used to simulate a dataset [2]. A data sample s of class c1 is
generated by drawing a large number of variables using the two multinomial distributions
associated to the sample: 1/ g „ Multinomialpθsq, 2/ v „ Multinomialpβgq.

Simulated dataset

Table - Average metrics (%) and standard deviations calculated on the test samples
of each dataset after training 10 times each model with random initialisations.
Each PGR is averaged over 30 random rankings.

MLP LR
Dataset PanCan BRCA Simulation PanCan BRCA Simulation

Balanced accuracy (Ò) 94.5 ˘ 0.3 99.6 ˘ 0.1 99.9 ˘ 0.1 93.7 ˘ 0.4 96.6 ˘ 0.3 99.8 ˘ 0.1
PGR 23.2 ˘ 0.6 53.5 ˘ 2.1 25.5 ˘ 0.2 3.1 ˘ 0.2 88.8 ˘ 0.2 3.7 ˘ 0.1

Local ranking ϕ
PGI (Ò) 96.1 ˘ 0.2 98.7 ˘ 0.3 98.5 ˘ 0.1 96.0 ˘ 0.2 99.9 ˘ 0.1 99.1 ˘ 0.1
PGU (Ó) 4.8 ˘ 1.7 0.9 ˘ 0.2 0.3 ˘ 0.1 0.7 ˘ 0.7 1.1 ˘ 0.1 0.1 ˘ 0.1
FA (Ò) - - 74.2 ˘ 0.3 - - 72.8 ˘ 0.4

Global ranking ϕg

PGI (Ò) 59.0 ˘ 1.8 98.2 ˘ 0.3 49.9 ˘ 0.3 33.4 ˘ 1.2 99.9 ˘ 0.1 42.4 ˘ 0.5
PGU (Ó) 17.2 ˘ 1.3 1.6 ˘ 0.3 20.0 ˘ 0.2 9.4 ˘ 0.4 1.9 ˘ 0.1 4.6 ˘ 0.3
FA (Ò) - - 100.0 ˘ 0.1 - - 99.5 ˘ 0.1

(a) MLP (b) LR

Figure 3 - Curves obtained on the test samples of the PanCan dataset.
The ϕc are calculated in the same way as the ϕg, considering only the samples in class c.
To plot the curves, the features appearing first in the rankings ϕc of each class c are kept.
The random curves are averaged over 30 trials. Error bars represent standard deviations.

Remark: the balanced accuracy is the average of recalls calculated for each class.

Results

• Evaluation of the complexity of two real datasets from a model’s perspective.
E.g. MLP on PanCan.
- For each data sample, a set of around 784 features is sufficient for prediction.
Ñ Keeping the 784 most important features enables to maintain good predictions.

Keeping less does not (local PGU).
Ñ After masking the first 637 features, predictions deteriorate (local PGI).

- Similarly, for the whole dataset, keeping a set of 2810 features is sufficient (global
PGU). However, this set is not necessary.

Ñ Predictions are degraded once the 6697 most important features have been masked
(global PGI). Masking only the 2810 features do not deteriorate the prediction.

• Analyse of the pertinence of the selected features on simulated data (FA).
• Well behaved explanatory features are ambiguous.

PyTorch code https://github.com/mbonto/XAI_for_genomics.

Conclusion
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