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Introduction

adversarial attack: perturbs the input image to mislead a model
black-box attack: uses only the final output of a model
target model: a natural language explanation model (NL-XAI)
that predicts a decision and generates both a textual and visual
explanation
scenarios:
@ change the prediction, keep the same textual explanation
/lﬁl keep the same prediction, change the textual explanation
perturbation: unrestricted region-specific, generated using
semantic colorization and image editing filters

Methodology
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Validation

Dataset: ACT-X [3] for activity recognition tasks
Model: NLX-GPT [4] for prediction and explanation generation

Performance evaluation:
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Image quality: MANIQA and Colorfulness

Cases:
CFX: an adaption of ColorFool [2] with @1
FL-s (FL-m): full image filtering [1] with Q7 (and Q)
LC-s (LC-m): localized image filtering with Q7 (and Q1)
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Samples of adversarial images
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Takeaways

e NL-XAIl are vulnerable to black-box attacks

e prediction-explanation association can be disrupted with
simple photo editing techniques

e straightforward assessment of explanations’ robustness




