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• Supervised learning problems are formulated to decipher complex molecular processes driving cellular life.
E.g. phenotype prediction from transcriptomic data (gene expression).

• Feature attribution explainability methods return the input features on which the individual predictions are predominantly based.
• These features are often interpreted as the cause of the phenotype.

Problematic: What is the relevance of biomarkers identified using explainability methods? GitHub

Context

• Exploration of the relevance of the features identified by explainability.
• Definition of quantitative metrics.
• Simulation of data, with known discriminative features, mimicking genes.

PyTorch code https://github.com/mbonto/XAI_for_genomics.

Contributions

Sample level [2]
How the prediction of a sample changes when features are set to zero?
• Network f , input x, modified input x̃.

Prediction gap PG =maxpf pxq ´ f px̃q, 0q

• Area under PG when an increasing number of features is set to zero with
- most important removed first ÝÑ PG on Important features (PGI).
- less important removed first ÝÑ PG on Unimportant features (PGU).

Model level
How the accuracy of a network changes when genes are set to zero?
• Accuracy obtained with the most important features for the whole dataset.
• Accuracy obtained with random features.
Do known discriminative features stand out among the identified features?
• Number of relevant features F among the identified features M.

Feature Attribution FA “
|F X M|

|F |

Definition of quantitative metrics

Generative probabilistic model called Latent Dirichlet Association [3].
ÝÑ Known for document generation.

Individual samples (documents) are generated with a fixed number N of se-
quencing reads (words) associated with metabolic pathways (subjects).
• Prior ηp proportion of genes expressed in pathway p.
• Prior αc proportion of pathways expressed in class c.
• Proportion of reads appearing in a pathway βp „ Dirichletpηpq.

Generation of a sample s with N reads
Step 1 Draw the proportion of pathways θs „ Dirichletpαcq.
Step 2 For each read i,
- pathway assignment pi „ Multinomialpθsq,
- drawn gene gi „ Multinomialpβpq.

Simulation of gene expression data

• Simulated data (9900) or Gene expression from PanCan TCGA (9680).
• Classification problem 33 classes.
• Algorithm Logistic Regression (LR), Multilayer Perceptron (MLP),

Diffusion layer on a correlation graph (D).
• Explainability method Integrated Gradients (IG).

PanCan TCGA [1] - 16335 genes.
SIMU1/2 - 15000 genes. 1500 non-overlapping / 3000 overlapping pathways.

Experimental setting
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Figure 1 - Scheme describing the Prediction Gaps on Important features
(PGI) and on Unimportant features (PGU).

Table 1 - Explainability metrics averaged over test samples.

(a) Pan-Can TCGA
Network LR MLP D + LR D + MLP

Balanced accuracy (Ò) 93.2% 94.7% 92.5% 94.3%
PGI (Ò) 0.9570 0.9567 0.9750 0.9652
PGU (Ó) 0.0035 0.0197 0.0053 0.0133

(b) Simulations
Dataset SIMU1 SIMU2
Network LR MLP LR MLP

Accuracy (Ò) 99.5% 99.5% 99.9% 100%
PGI (Ò) 0.9905 0.9714 0.9881 0.9842
PGU (Ó) 0.0007 0.0036 0.0007 0.0039
FA (Ò) 0.72 0.76 0.43 0.45

D + FA (Ò) 1 1 0.96 1

Figure 2 - Explainability metrics on Pan-Can TCGA data with LR.

Results

• Evaluation of the complexity of the real dataset PanCan TCGA.
- Set of 50 genes sufficient to classify each sample (PGU).
- But not necessary (PGI).

• Analyse of the pertinence of the selected features on simulated data (FA).
• Well behaved explanatory features are ambiguous.

Conclusion
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